Thorium-Based Thin Films as Highly Reflective Mirrors in the EUV

نویسندگان

  • Jed E. Johnson
  • David D. Allred
چکیده

As applications for extreme ultraviolet (EUV) radiation have been identified, the demand for better optics has also increased. Thorium and thorium oxide thin films (19 to 61 nm thick) were RF-sputtered and characterized using atomic force microscopy (AFM), spectroscopic ellipsometry, low-angle x-ray diffraction (LAXRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near edge structure (XANES) in order to assess their capability as EUV reflectors. Their reflectance and absorption at different energies were also measured and analyzed at the Advanced Light Source in Berkeley. The reflectance of oxidized thorium is reported between 2 and 32 nm at 5, 10, and 15 degrees from grazing. The imaginary component of the complex index of refraction, β, is also reported between 12.5 and 18 nm. Thin films of thorium were found to reflect better between 6.5 and 9.4 nm at 5 degrees from grazing than all other known materials, including iridium, gold, nickel, uranium dioxide, and uranium nitride. The measured reflectance does not coincide with reflectance curves calculated from the Center for X-Ray Optics (CXRO) atomic scattering factor data. We observe large energy shifts of up to 20 eV, suggesting the need for better film characterization and possibly an update of the tabulated optical constants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DMMP Sensing Performance of Undoped and Al Doped Nanocrystalline ZnO Thin Films Prepared by Ultrasonic Atomization and Pyrolysis Method

Highly textured undoped (pure) and Al doped ZnO nanocrystalline thin films prepared by ultrasonic atomization and pyrolysis method are reported in this paper. ZnCl2 water solution was converted into fine mist by ultrasonic atomizer (Gapusol 9001 RBI Meylan, France). The mist was pyrolyzed on the glass substrates in horizontal quartz reactor placed in furnace. The Structural and microstructural ...

متن کامل

Time exposure performance of Mo-Au Gibbsian segregating alloys for extreme ultraviolet collector optics.

Successful implementation of extreme ultraviolet (EUV) lithography depends on research and progress toward minimizing collector optics degradation from intense plasma erosion and debris deposition. Thus studying the surface degradation process and implementing innovative methods, which could enhance the surface chemistry causing the mirrors to suffer less damage, is crucial for this technology ...

متن کامل

High reflectance ta-C coatings in the extreme ultraviolet.

The extreme ultraviolet (EUV) reflectance of amorphous tetrahedrally coordinated carbon films (ta-C) prepared by filtered cathodic vacuum arc was measured in the 30-188-nm range at near normal incidence. The measured reflectance of films grown with average ion energies in the ~70-140-eV range was significantly larger than the reflectance of a C film grown with average ion energy of ~20 eV and o...

متن کامل

Highly Reflective Uranium Mirrors for Astrophysics Applications

The reported optical constants of uranium differ from that of vacuum significantly more than other elements do over the range of about 150 to 350 eV. This suggests that uranium could be used to produce high reflectance imaging mirrors for many soft x-ray applications. Elemental uranium is too chemically active to be used as a front surface mirror without protection. We computed the expected ref...

متن کامل

Debris-free Euv Source for At-wavelength Metrology

Parallel to the development and optimization of high-power EUV sources for lithography, the realization of low-cost EUV sources for at-wavelength metrology is strongly required. These sources are important tools for the characterization of EUV mirrors and masks, for the determination of thin film transmission (EUV filters), for research on resist materials, and for the calibration of EUV detect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005